JSMPI: Building Parallel Applications in the Browser Environment

Thanasis Petsas, Elias Athanasopoulos and Sotiris loannidis
Institute of Computer Science
Foundation for Research and Technology, Hellas
{petsas, elathan, sotiris}@ics.forth.gr

Abstract

We take advantage of the massive adoption of the web
browser as the application for carrying out a plethora
user activities. Considering there are millions of web
users on-line at any given moment, a collection of web
browsers seems ideal for running distributed and paral-
lel computations. In this paper, we design, implement
and evaluate JSMPI; a framework for building traditional
Message Passing Interface (MPI) applications that can
run in the web browser environment. JSMPI was de-
signed so as to maintain the semantics of the traditional
MPI. By using JSMPI, an MPI program, with little code
modifications, can be executed by a collection of web
browsers, as it would on a native MPI environment.

1 Introduction

The web browser is capable of running multiple, feature-
rich applications. The web, composed of a series
of advanced and mature technologies, such as HTTP,
JavaScript and XML, is a modern platform for build-
ing applications, that were traditionally perceived as the
de facto applications that complement a modern operat-
ing environment (Gmail, Google Docs, Picasa) Major IT
vendors have built complete operating systems and plat-
forms based solely on the use the web (ChromeOS, CR-
48).

According to work done in [5], the estimated mean
time of someone surfing the web is 74 minutes. This es-
timation was conducted 5 years ago, and we expect an
increased mean surf time today. Thus, the web browser
seems the ideal platform for utilizing for distributed com-
putation. Commodity devices have also been proposed
for outsourcing computation in the past [2, 1, 7]. How-
ever, this is first time a traditional framework for build-
ing parallel applications, such as MPI is built in the web
browser.

We make the following contributions:

e We design, implement and evaluate JSMPI, an MPI
version for the web browser. Our evaluation shows
that traditional computational problems, such as the
calculation of Pi, demonstrate similar speedup in
JSMPI as with traditional MPI.

e We focus on the semantics of JSMPI and provide an
identical API as in MPI. An MPI program written in
C, with minimal modifications, can be easily trans-
formed to a JSMPI program written in JavaScript,
and run as is on a collection of browsers.

2 Design and Impementation

JSMPI consists of two main components: the JSMPI
Client that is a browser extension containing all the nec-
essary code for writing parallel applications, and the
JSMPI Cache which is a directory server similar to the
one used by Tor [4].

The JSMPI Client is the core component of our ar-
chitecture as it contains all the functions that are needed
for building parallel applications in the browser environ-
ment. Our intention was to make the Client easily de-
ployable and readily available to as many Internet users
as possible. For these reasons we chose the web browser
as a platform to implement our framework. We have de-
signed our framework as a Firefox extension. Firefox is
a widely-used Internet browser available in many differ-
ent platforms with strong support in third-party plugins.
Users that want to participate in the JSMPI network sim-
ply install the JSMPI extension via one-click using the
build in installer of Firefox. Our Client is written entirely
in JavaScript using only the Mozilla API. This ensures
that Firefox is the only requirement for someone want-
ing to use our framework. Furthermore, for systems with
low resources it is possible to use XULrunner instead of
Firefox, a runtime environment developed by the Mozilla
Foundation to provide a common back-end for XUL ap-
plications.

Function Request | Headers
Ping GET X-PORT
List GET -
GetMylI P GET -

Table 1: Set of JSMPI node functions used for interaction
with the Cache

JSMPI Clients are separated in two categories: the
slaves and the masters. Both of have to start by regis-
tering with the JSMPI Cache (as described later). Af-
terwards a slaves wait to receive a URL containing the
location of the application’s source code from a master.
A master is responsible to send such a URL to slaves (ob-
tained from the JSMPI Cache). Then, the slaves send an
acknowledgment to master informing that they have re-
ceived the URL and start running the application. When
the master receives the acknowledgments from all the
slaves it also starts executing the application. This pro-
cess is hidden from the volunteer users that participate
in the network (slave nodes), as well as from develop-
ers that have written and test their applications (master
nodes), since they are implemented as inner functions
of the framework. All the communication between the
JSMPI nodes, as well as between nodes and Caches is
done via HTTP requests. HTTP requests are sent by us-
ing the XMLHttpRequest object, which is prototyped in
all browsers. For handling HTTP requests from other
nodes or the Cache, each node implements an HTTP
server. Currently the server used by our framework is
a modified version of the server used for testing plugins
in the Mozilla Development Center. Also, we use the na-
tive support for threads to parallelize tasks that require
network communication and thus impose delay penal-
ties. To overcome possible problems in case nodes run
behind a NAT or inside a VPN network, where it would
be difficult to discover its real IP address, nodes ask for
their IP addresses from the Cache at startup.

The second component of our system is the JSMPI
Cache. JSMPI Caches are similar to the directory servers
that Tor uses to preserve a distributed information of
known routers and their current state across the Tor net-
work. They comprise the main registries of the JSMPI
network and share a list with the currently active nodes.
JSMPI Caches are simple HTTP servers implemented in
Python based on the BaseHTTPServer module. They in-
clude a fairly small processing logic since their function-
ality is limited to registering JSMPI nodes in the net-
work, populating the list of nodes and informing nodes
for their IP addresses when they reside behind a NAT
firewall or inside a VPN network.

All the communication between the nodes and the
Caches happens through simple HTTP GET requests. In

Table 1 we list all the functions (HTTP requests with the
appropriate headers) that a node may use to communicate
with a Cache. When a node wishes to participate in the
network, it has to register itself with the Cache through
a specific HTTP request called a Ping request. The node
sends a Ping request to a Cache and specifies its port in a
header (X-PORT header). Whenever the Cache receives
such a request identifies the node as alive, saves its pair
of IP address and port in a structure and replies with an
acknowledgment. This response helps the node to under-
stand if the Cache is also alive. Moreover, Ping requests
can be exchanged between nodes for the same purpose:
a node A can use a Ping request to identify if a node B
is alive. Furthermore, both nodes and Caches make peri-
odical Ping requests to ensure for the availability of the
each other. Another communication function that a node
may use is the List request. Using this request a node can
be informed from the Cache about currently alive nodes
that participate in the network. Also, List requests may
be sent between nodes so that the network can keep op-
erating in case that a set of Caches becomes unreachable.
Finally, a node maybe want to discover of its real IP ad-
dress when lying behind a NAT box or a VPN network.
To achieve this, it can use the GetMylp function send-
ing a GetMylIP request to the Cache. The response will
contain its public IP address.

2.1 API

We now describe the basic API of our framework. There
is a core set of functions that all traditional implementa-
tions of MPI support. We start by presenting the spec-
ification (and behavior) of this set of functions in our
framework and continue with a set of collective commu-
nication functions for more elaborated programs.

2.1.1 Basic MPI Functions

JSMPIClient This is the constructor of the JSMPI-
Client class. By calling this function the browser be-
comes a JSMPI slave and all the necessary procedures
take place such as the initialization of the HTTP server
to handle the requests, the notification of its presence to
the Cache, the look up of the currently available nodes
efc..

finalize This function is the destructor of the
JSMPILCient and terminates all the MPI processing. It
must be called at the end of the MPI code. After the
finalize function call, only non-MPI code is permit-
ted. Any MPI calls made after a finalize function
call will cause an error.

getClientSize Through this function a node can
be informed about the currently available nodes partic-
ipating in the network. The result comes from a Ping

request made from the node to the Cache.

getClientId If a node needs to get its identifier it
calls this function. The identifier of a node in JSMPI is
the pair of the IP address and the port of the HTTP server
that runs inside the node. A GetMyIP request is made to
the Cache for the node to be discover its public IP address
when is behind a NAT or inside a VPN network.

send This function is used for sending messages be-
tween nodes in our framework. The content of the mes-
sage can be of any type supported by JavaScript. We
apply a serialization process for every message content
to be able to be transmitted via HTTP. The marshalling
of a message content is done via roSource() JavaScript’s
native method.

receive This function is used to receive a message
from a node. The message is being received through
the HTTP server that every Client implements. When a
Client receives a message has to deserialize its contents.
The unmarshalling of a message content is achieved
through eval() JavaScript’s native method.

2.1.2 Collective communication functions

In all the functions below, a group of nodes may refers
to all the nodes participating to a parallel application or
a subset of them that is defined by an optional input ar-
gument.

broadcast broadcasts a message from one node to
a group of nodes in a parallel application. After the end
of this function each node of the group will have received
the same data.

gather gathers together messages from a group of
participating nodes into an array object at the Client
where the call takes place.

allGather gathers data from a group of participat-
ing nodes and distributes them again to all these nodes.
To collect the data from the nodes allGather uses the
gather function. Similarly, to distribute them to all the
nodes, it uses the broadcast function.

scatter scatters data from one node to a group of
participants. The data is being cut into chunks and each
chunk targets a particular node.

allScatter gathers data from a group of partici-
pants and scatters them back to all of them. To collect
the data from the nodes allScatter usesthe gather
function. Similarly, to intersperse them to all the nodes,
it uses the broadcast function.

reduce gathers data from a group of participant
nodes and reduces them through a specific operation
(add, mul, min, max efc.) to a single value.

allReduce reduces data from a group of participant
nodes and distribute the result back to all of them using
the broadcast function.

2.2 Examples

In 1 we show an example of a simple parallel application
that computes the sum of an array of numbers written (a)
for our framework, and (b) for traditional MPIL.

In the first part of the example we call the constructor
of JSMPIClient. The two arguments that taken as input
are defined in a configuration file and can be changed
on demand. The control flow will meet the second part
of the program (if block) if the node is a slave. In this
case the node is waiting to receive data from the mas-
ter through a receive call. The master that is used as
argument in the receive function is a global variable
defined inside the framework. Its initial value has been
set when a master node chose to reserve this Client, so as
to participate in this parallel application. When the slave
receive the message which has a chunk of the numbers
array, will compute the sum of them and will proceed to
a send function call sending the result back to the mas-
ter. In the opposite case, if the node is a master, the con-
trol flow will reach the third part of the program (else if
block). In this part the master assign to the variable num-
bers an array that parses from file named as “array.txt”.
Then a scatter call will follow to send the array to all
the slaves. Finally the master will compute the sum for
its own chunk and will gather and aggregate together all
the slaves’ sum results. Finally in the fourth part, both
a slave and a master will call the finalize function to
stop the parallel application.

3 Evaluation

To evaluate our framework we developed two parallel ap-
plications. The first is a simple parallel PI calculation and
the second one is a distributed search of an element in-
side a JavaScript array. In order for our analysis to con-
form with the dynamic nature, latency and heterogeneity
of the Internet, all the experiments were conducted on
PlanetLab [3].

Figures 2 and 3 show the execution time of the pi cal-
culation and distributed search application respectively
for an increasing number of web browsers. We immedi-
ately notice that the total execution time scales as we add
more nodes to the network. The results are better for the
pi calculation than for distributed search application as
the second involves more intensive communication op-
erations with larger amount of data. Figure 4 illustrates
the corresponding speedup ratios achieved in our exper-
iments. One can see that while speedup is possible, due
to communication limitations this is not linear. The max-
imum speed-up for the pi calculation reaches 6.4 and for
the distributed search it reaching 2.6 times when the net-
work consists from 32 browsers. The speedup ratios are
less for the distributed search application than for the pi

// part 1

var node = new JSMPIClient (cache, port);
// part 2
if (mode == "slave") {

var msg = node.receive (master);

var sum=0;

for (var i=0; i<msg.length; i++) {

sum += msgl[i];

}

node.send (master, sum);
}
// part 3
else if (mode == "master") {

var numbers readFile ("array.txt");
var master_chunk
node.scatter (numbers) ;
var sum = 0;

for (var i=0; i<master_chunk.length; i++) {
sum += master_chunk[i];

}

var slaves_sums = node.gather();

for (var i=0; i<slaves_sums.length; i++) {

sum += slaves_sums[i];

}

// part 4
node.finalize();

(a)

Figure 1: A piece of code that computes the sum of array numbers expressed in JSMPI framework (a) and in traditional

MPI in the C language (b).

150 . .
m Computation time

B Communication time

125

100 -

75

50

25 +

Execution time (sec)

1 2
Number of browsers

4 8 16 32

Figure 2: Execution time of pi calculation for an increas-
ing number of browsers tested on PlanetLab

calculation due to communication overhead. It is worth
mentioning that tried to used the less loaded PlanetLad
nodes in terms of CPU utilization while conducting our
experiments.

We also measured the latency between two JSMPI
nodes in PlanetLab. Figure 5 shows the results of our ex-
periments for different message sizes between 1KB and
32MB on a double-logarithmic scale.

// part 1
MPI_Init (&argc,
// part 2
if (mode !=0) {
MPI_Recv (&msg, 1, MPI_INT,
tag, MPI_COMM_WORLD,
int i, sum=0;
for (i=0; i<array_length (msg);
sum += msgl[i];

}

&argv) ;

Or
&status);

i++) |

MPI_Bsend (&sum, 1, MPI_INT, O,
tag, MPI_COMM_WORLD) ;
}
// part 3
else { // master

int *numbers read_arrayfile ("array.txt");
int *master_chunk split_array (&numbers) ;
MPI_Scatter (numbers, CHUNK_SIZE, MPI_INT,
rbuf, CHUNK_SIZE, MPI_INT, root, comm);
int i, sum=0;
for (i=0; i<array_sz (master_chunk);
sum += master_chunk[i];

i++) |

}
MPI_Gather (slaves_sums, MPI_INT, MPI_INT,
rbuf, MPI_INT, MPI_INT, root, comm);
for (i=0; i<array_sz(slaves_sums); 1i++) {
sum += slaves_sums[i];
}
// part 4
MPI_Finalize();

(b)

50 +

30 §

10

Execution time (sec)

1 2 4 8 16
Number of browsers

32

Figure 3: Execution time of distributed search for an in-

creasing number of browsers tested on PlanetLab

4 Related Work

® Computation time
B Communication time

Yue et al. [8] leverage the power of Ajax and the end-
user extensibility of modern Web browsers to implement
a simple and practical framework for Real-time Collabo-
rative Browsing (RCB).

In [6], McKinley et al. develop an object-oriented
middleware framework called Pavilion which allows a

6.4X
8 - 5.3X
Qo
=
S 4
Q.
T 2
2
) 19
o
n
07 I I I | | |

1 2 4 8 16 32
Number of browsers

-—= pi calculation -=—= distributed array search

Figure 4: Speed-up ratios of the PI calculation and
distributed array search for an increasing number of
browsers tested on PlanetLab

,___.M/

T T
1 10 100 1073 10%4 1075
Message Size (KB)

Figure 5: Latency of a one-to-one communication via
JSMPI in PlanetLab.

developer to implement collaborative web-based appli-
cations using its current functionality or by extending it.

In [2], Chandra et al. propose a different approach
to the current “Pay-as-you-go” cloud model of strong
guarantees and highly centralized infrastructures. Their
idea is to build clouds by using distributed voluntary re-
sources donated by end-user hosts. They call their con-
cept “Nebulas”, more decentralized and less-managed
clouds. Our approach is more similar to the Nebulas
model as our framework can be embedded in the web
browser of any Internet user globally (high decentraliza-
tion) and it is of no cost since it is provided-donated by
end-users.

5 Conclusions

We presented the design and implementation of JSMPI,
an MPI-compatible programming model, based on the
JavaScript language and the browser execution platform.
Moreover we have enhanced the Mozilla Firefox browser
through an extension so as to support our framework.
Our goal was to lay a foundation of a network comprised
of web browsers living on Internet-users’ machines that
is capable of executing distributed and parallel applica-

tions.

To demonstrate the effectiveness of our framework we
conducted our experiments on the PlanetlLab testbed that
resembles the dynamic nature and heterogeneity of the
Internet. Our experimental results show that the execu-
tion of the programs scales reasonably over a growing set
of web browsers.

References

[1] David P. Anderson. Boinc: A system for public-
resource computing and storage. In Proceedings of
the 5th IEEE/ACM International Workshop on Grid
Computing, GRID ’04, pages 4-10, Washington,
DC, USA, 2004. IEEE Computer Society.

[2] A. Chandra and J. Weissman. Nebulas: Using Dis-
tributed Voluntary Resources to Build Clouds. In
USENIX 2009 HotCloud Conference Proceedings,
June 2009.

[3] Brent Chun, David Culler, Timothy Roscoe, Andy
Bavier, Larry Peterson, Mike Wawrzoniak, and Mic
Bowman. PlanetLab: An Overlay Testbed for Broad-
Coverage Services. ACM SIGCOMM Computer
Communication Review, 33(3):00-00, July 2003.

[4] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion router.
In Proceedings of the 13th USENIX Security Sympo-
sium, August 2004.

[5] V. T. Lam, S. Antonatos, P. Akritidis, and K. G.
Anagnostakis. Puppetnets: misusing web browsers
as a distributed attack infrastructure. In Proceedings
of the 13th ACM conference on Computer and com-
munications security, CCS *06, pages 221-234, New
York, NY, USA, 2006. ACM.

[6] P. K. McKinley, A. M. Malenfant, and J. M. Arango.
Pavilion: a middleware framework for collabora-
tive web-based applications. In GROUP ’99: Pro-
ceedings of the international ACM SIGGROUP con-
ference on Supporting group work, pages 179188,
New York, NY, USA, 1999. ACM Press.

[7]1 Shouhuai Xu and Moti Yung. Socialclouds: Con-
cept, security architecture and some mechanisms. In
INTRUST, pages 104-128, 20009.

[8] Chuan Yue, Zi Chu, and Haining Wang. Rcb: a
simple and practical framework for real-time collab-
orative browsing. In USENIX’09: Proceedings of
the 2009 conference on USENIX Annual technical
conference, pages 29-29, Berkeley, CA, USA, 2009.
USENIX Association.

