
1

Undergraduate thesis in Computer Science

HoneyBuddy: a honeypot architecture for
detecting IM threats in the wild

Heraklion, Crete, 2009

Petsas Athanasios

Computer Science Department

University of Crete

Supervisor: Evangelos P. Markatos

2

Report Outline

ABSTRACT .. 5

1 INTRODUCTION ... 6

2 RELATED WORK.. 7

3 CATEGORIES OF STUDIED IM ATTACKS... 8

3.1 Malware Infection ...Error! Bookmark not defined.

3.2 Harvesting Accounts.. 9

3.3 Issues of weak privacy settings ... 10

3.4 Vulnerabilities in client software... 11

4 IMPLEMENTATION..11

4.1 HoneyBuddy Architecture ... 12

 4.1.1 The harvesting module.. 12

 4.1.2 MSN messenger clients' handler.. 12

 4.1.3 The inspection module... 13

4.2 Contact Sources... 14

5 COLLECTED DATA ANALYSIS..14

5.1 MSN phishing sites .. 16

 5.1.1 Phishing site recognition ... 16

 5.1.2 URL blacklists’ response ... 17

5.2 Malware Analysis... 18

5.2.1 HoneyBuddy VS Malware databases.. 18

6 MYIMHONEYPOT, A DETEDTION SERVICE...20

7 CONCLUSIONS...21

3

REFERENCE: ...22

APPENDIX A ..25

4

Table of Figures

Figure 1. Screenshot from an MSN pshishing site..17

Figure 2. Classification of collected URLs...18

Figure 3. CVF of uptime of URLS per category...19

Figure 4. Detection delay of collected samples compared to the VirusTotal database.....20

Figure 5. Cumulative distribution function of detection rate for collected samples

based on VirusTotal reports ...20

5

Abstract

Instant messaging (IM) services have become extremely popular
because of their momentary activity. The vast majority of
Internet users prefer to use instant messaging for their
communications instead of sending emails, because it permits
the exchange of real-time text messages. Due to their popularity
and acceptance, attackers try to exploit such kind of services by
sending malicious URLs or files to the contact lists
compromised instant messaging accounts or clients. In this work
we studied the behaviour of IM attacks through the design and
implementation of HoneyBuddy, a honeypot like infrastructure
for detecting malicious activities in IM networks. HoneyBuddy
finds and adds contacts to its honeypot messengers by querying
popular search engines for IM contacts or by advertising its
accounts on contact finder sites. Our deployment has shown that
with nearly three thousand contacts we can gather between 50
and 110 malicious URLs per day that belong to 10-15 unique
domains. 21% of our collected executable samples were not
gathered by other malware collection infrastructures, while 87%
of the identified IM phishing domains were not recorded by
popular blacklist mechanisms.

1 Introduction

6

Instant messaging is one of the most popular Internet activities.
There are hundreds of millions of people around the world that
use an instant messenger for communication, as well as millions
are and the instant messages that are exchanged every day. Due
to the fact that instant messaging services are large-scale
deployed, as they are supported by different kinds of computer
systems, from the personal computers of the usual type to more
sophisticated portable devices, such as the modern mobile
phones etc., attackers find them very attractive for their
malicious purposes. For this reason, attackers try to exploit
vulnerabilities of the IM client software (in the most popular are
included Microsoft Windows Live Messenger, Yahoo!
Messenger, A.O.L. and Skype), or try to delude IM users
through phishing techniques. Once a user account has been
compromised, attackers utilise the user’s credentials (username
and password) to connect to the particular IM service and
continue the same procedure to the friends of the user, so as the
attack propagates by targeting the victim’s contacts. The attack
vectors are either file transfers or instant messages that contain
URLs of websites controlled by the attacker. As users tend to
trust content sent from their contacts, the probability of users
accepting the transfer or clicking the URL is higher than in the
case of traditional phishing campaigns or malicious websites.
This work focuses on the detection of such kind of attacks
against IM users. Throughout the experience with the study of
these types of attack, came as a result the idea of the
implementation of HoneyBuddy, a honeypot mechanism for
detecting such attacks. Honeypots are closely monitored decoy
machines that are not used by a human operator, and their role is
to attract the interest of malicious users and aggregate data of
their behaviour. Based on this HoneyBuddy operates a number
of IM accounts automatically and is equipped with some
significant functions such as, harvesting IM contacts and
requesting them to join the IM accounts’ lists, accept file
transfers, finding in log files URL matching patterns etc.

7

2 Related Work

Xie et al. propose HoneyIM [32], a system that uses decoy
accounts in users’ contact lists, to detect content sent by IM
malware. HoneyIM can be deployed in an enterprise network
and alert network administrators of malicious content, provide
attack information, and perform network-wide blocking.
HoneyIM has a limited view of the IM attack landscape due to
its passive architecture and enterprise deployment. To overcome
these disadvantages, HoneyBuddy is an active architecture that
constantly adds new “buddies” to its decoy accounts,
transcending the narrow confines of an enterprise level
deployment, and monitors a variety of instant messaging users
for signs of contamination. Furthermore, the use of pidgin [11]
prevents their system from detecting attacks that exploit
vulnerabilities in dominating instant messaging software such as
the MSN live messenger [9]. Trivedi et al. address the problem
of instant messaging spam (spim) and how to utilize honeypots
to extract network and content characteristics of spim [30]. They
set up an open SOCKS proxy that only allows outbound
connections to IM servers. The analysis of the collected data
reveals several characteristics of spim campaigns. An interesting
result is that advertised URLs lead to a small number of
websites, something that is confirmed by our findings. However,
there are several major differences with our work. While they
focus on spim campaigns, our honeypot detects all types of
instant messaging threats mentioned in section 3, and also
handles malicious file transfers. Furthermore, they propose a
passive architecture that waits for spimmers to connect to their
open proxy while our system actively broadens its view by
connecting with a diverse and wide-spread set of IM users.
Finally, their approach will not work with encrypted instant

8

messaging traffic, such as Skype traffic. Mannan et al. conduct a
survey and provide an overview of threats against instant
messaging users and existing security measures [27]. Several
scenarios of attacks against IM users are presented, as well as
the weaknesses of default security and privacy features provided
by IM client software. They conclude that existing public and
enterprise IM systems fail to provide sufficient security and
protect users from existing IM threats. Hindocha [22] provides
an overview of several IM clients and protocols, threats to
instant messaging like worms and trojans, and issues regarding
IM blocking. Liu et al. [25] propose an architecture, for
detecting and filtering spim, that incorporates widely deployed
spam-filtering techniques and new techniques specific to spim
based on the analysis of spim characteristics. In follow-up
publications [26, 24], the authors focus on instant messaging
worms. In [26] worm propagation is modeled and traced through
multicast event tree tracing, while in [24] a formal IM worm
modeling based on branching process is presented. Williamson
et al. [31] apply virus throttling as a mitigation measure against
viruses and worms that spread through instant messaging. They
explore how several throttle parameters delay propagation
without interfering with normal traffic.

3 Categories of studied IM Attacks

As mentioned above, attackers get attracted by the high
population of IM networks, so they try to exploit such networks
to fulfil their malicious purposes, such as spreading malware,
scamming and other similar issues. What follows are the most
common scenarios of attacks that take place in IM networks.

9

3.1 Malware Infection

There are many types of malware instances [21] that their role is
to be attached to a victim’s instant messaging client and start
spreading themselves to random contacts of user’s account that
use that IM client by sending executables or by sending URLs
that point to malicious websites. The most common procedure
that these malware pieces follows is to make login to the IM
network, to send the malicious URLs or files, and afterwards to
log out as expeditiously as possible. In order to appear more
believable to an everyday user, the sending URLs point to
domains whose name contains the username of the recipient, for
example http://contact_username.party-pics.com .

3.2 Harvesting accounts

Another way for attackers to obtain access to IM accounts and
do their malicious stuff is by using compromised credentials
which can harvest either through phishing sites, through
keyloggers or through social engineering. The fact that many
services, such as the MSN, that use unified credentials for email
and instant messaging, have made the life of attackers easier.
The most common phishing sites, ask for a victim to fill a
username and a password field, in order to see some
photographs that want to share with her someone of her
contactlist. The victim enters her IM credentials in the website
and she is redirected to another domain that nothing happens,

10

however her account is stolen. A screenshot of a phishing site is
displayed below, in Figure 1.

3.3 Issues of weak privacy settings

Even in the absence of malware infection or stolen credentials, s
some messengers provide the option to allow incoming
messages from people who are not in the user’s contact list. By
a look at the latest client versions of the most popular IM
services: MSN live messenger, Skype, Yahoo and AIM, one can
find out that MSN live messenger is the only IM client which

11

has a privacy setting enabled by default that blocks messages
from accounts not contained in the contact list. Skype, Yahoo
and AIM by default allow anyone to send instant messages to
our account, but this setting can be opted-out. Attackers exploit
these settings to send unsolicited messages to IM users.

3.4 Vulnerabilities in client software

IM client software suffers from the problem of monocultures.
Once an exploit is discovered, then automatically millions of
clients can be infected immediately [20]. While in the case of
malware infection exploits take advantage of the IM client to
spread, this case involves the attack where the IM client is used
to infect the rest of the machine.

4. Implementation

HoneyBuddy was designed taking into consideration the four
attack scenarios mentioned above. It uses the latest versions of
the original clients, the same software that most users install.
The main reason for this choice is that direct attacks on IM
client will be detected. The main idea is to run harvested
accounts to a decoy account, or to advertise this account to
famous contact finder sites and to monitor any incoming
message that is by default suspicious, as HoneyBuddy is a
honeypot architecture. In this implementation was chosen the
MSN service as it’s the most popular, but HoneyBuddy is
generic enough to allow the fast implementation and in other IM
services. Furthermore, MSN live messenger 2009 inter-operates
with Yahoo, and is planned to introduce interoperability with
Google Talk, AIM and other services, rendering our architecture

12

deployable to all major instant messaging services. All deployed
messengers run in a fully patched Windows XP SP3 system.

4.1 HoneyBuddy Architecture

In this chapter is presented the main components of
HoneyBuddy architecture, which are a harvesting module, a
script-based engine that handles the MSN messenger clients and
the inspection module.

4.1.1 The harvesting module

The harvesting module is responsible for gathering accounts that
will later be added to the decoy accounts. All harvested accounts
are inserted in CTT files (MSN contact files) that are imported
in the messengers and all accounts listed are automatically
invited. In the Appendix A, there is the source code of creation
of such lists from the accounts that is collected.

4.1.2 MSN messenger clients’ handler

The script-based engine starts the messengers and invites all
contacts gathered from the harvesting module. Based on the
AutoIt software [3], we can automatically start the application,
import CTT files and invite other accounts to our friend list. The

13

AutoIT software allows the manipulation of the windows of an
application the same way a user would manually click, monitor
the status of the application and check for new windows (in
order to check for incoming messages). When an incoming
message comes and includes a request for a file transfer, the
engine automatically understands that there is a transfer by
matching strings in the conversation windows and accepts it. As
each messenger can only have a limited number of friends in its
contact list, MSN by default allows only 1000 contacts, it is
preferable to run multiple messengers. For resource efficiency
reasons, we used MSN Polygamy [10] in order to run multiple
MSN messengers on a single platform without the need of
additional virtual machines. Moreover, when a decoy account
has been advertised in an account finder site, in case there are
requests from other users that have visited this site, the engine
accepts all these requests. Sample code of how the engine works
is presented in the Appendix A.

4.1.3 The inspection module

The inspection module monitors the logs of the messengers for
malicious URLs. It additionally checks the default download
folder for new file transfers. An interesting finding is that there
were URLs and malware in the Hotmail inboxes of our
accounts. Thus, the inspection module was extended to also
fetch and analyze e-mails, so as to extract URLs and executable
attachments. All malicious URLs are stored in a database and
are queried every one hour to check their uptime status.

4.2 Contact Sources

14

Were used two major sources for finding and adding contacts.
The first one was queries for contact files and e-mail accounts
belonging to the @hotmail.com and @live.com domains.
Simple queries like “filetype:ctt msn” or “inurl:’@hotmail.com”
were able to provide us thousands of contacts. Were invited
6554 contacts to become friends with the decoy accounts. 946 of
those (14%) accepted the invitation.

Other potential sources are sites where users advertise their
MSN account, such as addmymsn.com[8], orbuddyfetch.com/.
The addmymsn.com site contains more than 25,000 active
messenger contacts that are advertised by their owners for
social networking purposes. Were also advertised some accounts
on this site and were instructed the honeypot messengers to
accept any friend request. Between two weeks 1990 contacts
had been added while this number increases daily.

5 Collected data analysis

In this chapter is provided an analysis of one-month data
collected by the HoneyBuddy infrastructure, from the 1st to the
31st of March 2009. During the collection period, the
HoneyBuddy collected 1801 unique URLs that belong to 277
unique top-level domains, and the majority of the malicious
URLs had not been detected by popular detected mechanisms.

At first it took place a simple classification of the URLs. The
four main categories were phishing, porn, dating and adware
(adware are characterized sites that promote third-party addons

15

for the MSN messenger like extra winks, emoticons etc.). As we
can see in the figure 2, bellow, 617 of the URLs in 62 top-level
domains were phishing that pose a security danger for IM users.

Figure 2: Classification of collected URLs

Afterwards, was done an analysis of the uptime of the collected
URLs that can be seen in Figure 3. On average, a site is
functional approximately for 240 hours (10 days). Was also
plotted the uptime graph for each category. As can be noticed,
porn and MSN phishing sites present much higher uptime than
adware and unclassified sites. Half of the MSN phishing sites
were alive for up to 250 hours (ten and a half days), while
adware present a shorter lifetime of up to 80 hours (three and a
half days).

16

Figure 3: CDF of uptime of URLs per category

5.1 MSN Phishing sites

Attackers try to gather MSN credentials by tricking the user into
entering her MSN e-mail and password in a bogus site. To
validate that these phishing sites actually steal user credentials,
were created several MSN accounts and were entered into the
phishing sites. Each account had one of the decoy accounts as a
friend. The decoy account received messages from the stolen
MSN accounts that advertised the phishing site.

5.1.1 Phishing site recognition

17

All phishing sites that were gathered look exactly the same. A
screenshot of such a site is shown in Figure 1. Was analyzed the
source HTML code of all phishing sites and there was
absolutely zero difference. All the phishing pages were 6K long
and contained the same images and forms. Was also detected a
localized phishing site which had translated content, a technique
used in e-mail spam campaigns [16]. The number of syntactical
and grammatical errors revealed that the text translation was
done automatically. For the time being, simple pattern matching
for specific text segments is efficient for detecting these sites.
Another detection mechanism is to query the various URL
blacklists.

5.1.2 URL blacklists’ response

The Google blacklist was queried through the Google Safe
Browsing API [7] to check if it included the phishing sites that
were discovered. From the 62 unique top-level domains (TLD)
that hosted phishing sites and were detected by HoneyBuddy,
only 8 were listed by Google blacklist. That means that 87% of
the domains captured by HoneyBuddy were not listed
elsewhere, making HoneyBuddy an attractive solution for MSN
phishing detection. The average delay from when our system
detected one of the 8 sites until it was included in the Google
blacklist was around two weeks, leaving a time window of 15
days for attackers to trick users. Firefox, one of the most popular
browsers uses the Google Safe Browsing API as an anti
phishing measure. It was done the same with the blacklist
maintained by SURBL [17] and URL- blacklist.com [18].
SURBL detected only 1 out of the 62 MSN phishing domains
(1.5%) and none of the adware domains. None of the phishing
or adware sites were listed by URLblacklist.com. A very
interesting fact is that all 62 top-level domains translate to only
five different IP addresses. Also, was queried Spamhaus.org

18

[15] but none of the IP addresses were included. 47% of the
domains translate to the first IP address, 28% to the second IP
address, 18% to the third address and the rest of the domains to
the other two.

5.2 Malware Analysis

HoneyBuddy infrastructure collected 19 unique malware
samples either through direct file transfers (uncommon case) or
by visiting URLs that were redirected to executable files. In the
case of URLs, the e-mail account of the victim was always
appended as a parameter to make it look more realistic. In some
cases attackers used popular keywords, like Facebook. Due to
the small volume of files, it was easy to manually check these
files using the Anubis analysis center [1]. All of them were
characterized as dangerous, while some of them were bots that
connected to an IRC C&C server. By joining the IRC network,
we downloaded even more malware samples (not listed in this
section).

5.2.1 HoneyBuddy VS Malware databases

In order to verify how original these samples are, were
submitted to the VirusTotal [19] service. VirusTotal is a large
malware collection center with the primary goal of providing a
free online virus and malware scan report for uploaded samples.
Every day VirusTotal receives around 100,000 samples. Four
collected samples had not been seen by VirusTotal before, that
is 21% of the samples were zero-day malware instances. Figure

19

4 shows the relative detection delay compared to the date the
samples entered the VirusTotal database. The base bar of the
stack graph (solid white) shows how many samples were
detected with a delay of one or more days, the middle bar (solid
black) displays the number of samples that were detected the
same day as VirusTotal while the top bar shows the number of
samples not included in the VirusTotal database. Five samples
(26%) were collected the same day they entered the VirusTotal
database, while the maximum detection delay was five days. We
also checked the VirusTotal analysis reports for the collected
samples. 42% of the samples were detected by half of the anti-
virus engines, while the maximum detection rate was 77%.
However, the dates of the analysis reports were one month after
the collection date as we did not submit the samples the day they
were captured. The one month delay means higher detection
rates for the anti-virus engines. Even in that case, it can be
observed that there are samples that are recognized only by one
third of the anti-virus products. The cumulative distribution
function of detection rates can be seen in Figure 5.

Figure 4: Detection delay of collected samples compared to the
VirusTotal database.

20

Figure 5: Cumulative distribution function of detection rate for
collected samples based on VirusTotal reports.

6. MyIMhoneypot, a detection service

From all the study that was described, came out the idea of
setting up an early detection service that can inform users if
their accounts or IM clients have been compromised.
MyIMhoneypot is orthogonal to existing defence mechanisms
and works as follows. Any user that wants to check if her
account is compromised registers with the myIMhoneypot
service. Upon registration, the service creates a unique
IMhoneypot account (for example, a new MSN account that will
be used as a decoy account) and informs the user to add that
honeypot account to her contact list. As the user will never start
a conversation with the honeypot account but an IM attacker
will, the user can check if something is wrong by visiting the
website of the service and checking the conversation logs with
her unique honeypot account. If there are entries in the
conversation log of her decoy account, then there is a strong

21

indication that her IM client or credentials have been
compromised. There is an implementation of MyIMhoneypot
for the MSN platform, named myMSNhoneypot and can be
found at http://mymsnhoneypot.dyndns.org.

7. Conclusions

In this work is being proposed HoneyBuddy, an active honeypot
infrastructure designed for detecting malicious IM activities in
the wild. HoneyBuddy automatically finds user accounts for
incoming messages and file transfers, and extracts suspicious
executables and URLs. The suspicious data gathered by
HoneyBuddy is correlated with existing blacklists, and malware
collection center databases. Despite the simplicity of our system,
deployment for the MSN service showed that 87% of the
identified phishing domains were not listed by popular blacklist
mechanisms. Furthermore, 21% of collected malware samples
were also not listed by other infrastructures. These findings
confirm that existing security measures of instant messaging
services are insufficient, and also indicate the effectiveness of
our system as a complementary detection infrastructure.

It was also deployed myMSNhoneypot, a prototype
implementation of a service that is open to the public and
creates dedicated IM honeypots for users. This service provides
an early alerting mechanism for users whose IM accounts or
clients are compromised. It provides decoy accounts for users
that register with the service to add to their contact list. A
message from the user to a decoy account is an indication that
the user’s credentials or IM clients are compromised, as the user
would never initiate a conversation with the decoy contact.

22

References

[1] Anubis: Analyzing unknown binaries. http://anubis.
iseclab.org/.

[2] AQABA Search Engine Demographics. http://http://
www.aqaba-sem.com/search ed.htm/.

[3] AutoIt. http://www.autoitscript.com/autoit3/
index.shtml/.

[4] BuddyFetch. http://buddyfetch.com/.

[5] CAPTCHA: Telling Humans and Computers Apart Automatically.
https://captcha.net/.

[6] Europe surpasses north america in instant messenger users, comscore
study reveals. http://www.comscore.com/press/

release.asp?press=800.
[7] Google safe browsing api. http://code.google.com/
apis/safebrowsing/.

[8] MSN Contacts Finder. http://addmymsn.com/.

[9] Msn messenger. http://messenger.live.com/.

[10] MSN Polygamy. http://www.softpedia.com/

get/Internet/Chat/Instant-Messaging/
MSN-Messenger-7-8-Polygamy.shtml/.

[11] Pidgin, the universal chat client. http://www.pidgin.im/.

[12] Planetlab, an open platform for developing, deploying
and accessing planetary-scale services. http:
//www.planet-lab.org.

[13] Scraping facebook email addresses. http:
//kudanai.blogspot.com/2008/10/

23

scraping-facebook-email-addresses.html.

[14] Skype Fast Facts, Q4 2008.
http://ebayinkblog.com/wp-content/uploads/
2009/01/skype-fast-facts-q4-08.pdf.

[15] The spamhaus project. http://www.spamhaus.org/.

[16] The state of spam a monthly report august 2007.
http://www.symantec.com/avcenter/reference/
Symantec Spam Report - August 2007.pdf.

[17] Surbl. http://www.surbl.org.

[18] Urlblacklist.com. http://www.urlblacklist.com/.

[19] Virustotal, online virus and malware scan. http://www.
virustotal.com/.

[20] Vulnerability in PNG Processing Could Allow Remote Code
Execution. http://www.microsoft.com/technet/
security/bulletin/MS05-009.mspx.

[21] W32.Bropia. http://www.symantec.com/
security response/writeup.jsp?docid=
2005-012013-2855-99&tabid=2.

[22] HINDOCHA, N. Threats to instant messaging. Symantec Security
Response (2003).

[23] LESKOVEC, J., AND HORVITZ, E. Planetary-Scale Views on a
Large Instant-Messaging Network. In Proceedings ofWWW2008
(April 2008).

[24] LIU, Z., AND LEE, D. Coping with instant messaging worms -
statistical modeling and analysis. pp. 194–199.

[25] LIU, Z., LIN, W., LI, N., AND LEE, D. Detecting and filtering
instant messaging spam - a global and personalized approach.
pp. 19–24.

24

[26] LIU, Z., SHU, G., LI, N., AND LEE, D. Defending against instant
messaging worms. In In Proceedings of IEEE GLOBECOM

2006 (2006), pp. 1–6.
[27] MANNAN, M., AND VAN OORSCHOT, P. Secure public instant
messaging: A survey. In Proceedings of the 2nd Annual Conference

on Privacy, Security and Trust (PST04), pp. 69–77.
[28] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos: an
Emulator for Fingerprinting Zero-Day Attacks. In Proceedings
of ACM SIGOPS Eurosys 2006 (April 2006).

[29] PROJECT, H. Know your enemy: Learning about Security
Threats. Pearson Education, Inc. (2004).

[30] TRIVEDI, A., JUDGE, P., AND KRASSER, S. Analyzing network
and content characteristics of spim using honeypots. In Proceedings
of the 3rd USENIX SRUTI (2007).

[31] WILLIAMSON, M., PARRY, A., AND BYDE, A. Virus throttling
for instant messaging. In Virus Bulletin Conference (2004),
pp. 38–4.

[32] XIE, M., WU, Z., AND WANG, H. HoneyIM: Fast detection
and suppression of instant messaging malware in enterprise-like
networks. In Proceedings of the 2007 Annual Computer Security
Applications Conference (ACSAC07).

25

Appendix A

What follows are a small piece of HoneyBuddy architecture:

Harvesting module:

Code for searching in Google ctt files and download them, to be
imported later to the decoy accounts (Python):

#!/usr/bin/python

from Google import Google, search
import os, sys, threading

def download(url):
"""
Copy the contents of a file from a given URL
to a local file.
"""
import urllib
webFile = urllib.urlopen(url)
localFile = open(url.split('/')[-1], 'w')
localFile.write(webFile.read())
webFile.close()
localFile.close()

"""
create a file named "search results.txt" to save
some information there about the search procedure
"""
#del sys
#sys.stdout = open("out.txt", "w")
class DownloadUrls(threading.Thread):
 def __init__(self, result):
 threading.Thread.__init__(self)
 self.result = result
 def run(self):

try:
 print "downloading url: %s ...\n" % (result.url())

 #sys.stdout = open("out.txt", "a")
 download(result.url())
except IOError:
 print "The server is taking too long to respond. Connection Timeout!"

"""
search in google for 'filetype:ctt "msn"''
122: is the number of results that google gives
"""
results = search('filetype:ctt "msn"', 60)

26

total_urls=0

"""
create a directory with name setted in folder name,
and change the current directory to the created one.
(Checks if already exists in the begining)
"""
foldername = "msn_ctt_files"

folder_exists = 0

listdirs= os.listdir("./")

for directory in listdirs:
 if directory == foldername:
 folder_exists = 1

if folder_exists == 0:
 folder = os.mkdir(foldername)

os.chdir("./"+foldername)

for result in results:
#create one thread for each url download...
background = DownloadUrls(result)
background.start()

background.join() # Wait for the background task to finish

total_urls += 1

print "Total number of urls: %d" % (total_urls,)

Code that converts a file that contains mails, to ctt format to be
imported to a decoy account (Python):

#!/usr/bin/python

import sys, string, os

''' Converts a file that contains e-mails to ctt format '''

''' Return True if file already exists, else False'''
def fileExists(f):
 try:
 file = open(f)
 except IOError:
 exists = False
 else:
 exists = True
 return exists

--- The Main Program ---

27

if sys.argv[1] == "":
 print "\n\t Usage: file2ctt.py <emails_file>"
 sys.exit()

mails_file = open(sys.argv[1], 'r')

if file exists, erase the old file..
if fileExists("accounts.ctt") == True :
 os.system("rm accounts.ctt")

cttfile = open("accounts.ctt",'w')

cttfile.write("<?xml version=\"1.0\"?>\n")
cttfile.write("<messenger>\n")
cttfile.write(" <service name=\".NET Messenger Service\">\n")
cttfile.write(" <contactlist>\n")

for line in mails_file:
 print line.rstrip('\n')
 cttfile.write(" <contact>"+line.rstrip('\n')+"</contact>\n")

cttfile.write(" </contactlist>\n")
cttfile.write(" </service>\n")
cttfile.write("</messenger>\n")

Inspection module:

Code of fetching the decoy account mailboxes and searching
them for URLs in the mailboxes (Python):

#!/usr/bin/python

import poplib
import os
from email.Parser import Parser
import string
import re
import errno
import datetime as dt
import MySQLdb

#convert a string month to its an integer representation
def month2number(m):
 month_no = {
 'Jan': '01',
 'Feb': '02',
 'Mar': '03',
 'Apr': '04',
 'May': '05',
 'Jun': '06',
 'Aug': '08',
 'Sep': '09',
 'Oct': '10',

28

 'Nov': '11',
 'Dec': '12',
 }[m]
 return month_no

#convert a date from format'4 Mar 2009' to '2009-3-4' (datetime for sql)
#s should be 11 chars long.if day is < 10, then s[10] should be ' '
def to_dateTime(s):
 if s[10] == ' ':
 return '%s-%s-0%s'%(s[6:10], month2number(s[2:5]), s[0])
 else:
 return '%s-%s-%s'%(s[7:11], month2number(s[3:6]), s[0:2])

#split an sql dateTime to python time
def datetime_slice(s):
 return int(s[5:7]), int(s[8:10]), int(s[0:4])

def hotmail_parser (username, password, url_list):
 print "* examine mailbox of %s"%username
 M = poplib.POP3_SSL('pop3.live.com')
 M.user(username)
 M.pass_(password)

 p=Parser()

 try:
 os.mkdir("attachments")

 except OSError, e:
 # Ignore directory exists error
 if e.errno <> errno.EEXIST:

 raise

 urlfinders = [
 re.compile("([0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-
9]{1,3}|(((news|telnet|nttp|file|http|ftp|https)://)|(www|ftp)[-A-Za-z0-9]*\\.)[-A-Za-z0-9\\.]+)(:[0-
9]*)?/[-A-Za-z0-9_\\$\\.\\+\\!*\\(\\),;:@&=\\?/~\\#\\%]*[^]'\\.}>\\),\\\"]"),

 re.compile("([0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-
9]{1,3}|(((news|telnet|nttp|file|http|ftp|https)://)|(www|ftp)[-A-Za-z0-9]*\\.)[-A-Za-z0-9\\.]+)(:[0-
9]*)?"),

 re.compile("'\\<((mailto:)|)[-A-Za-z0-9\\.]+@[-A-Za-z0-9\\.]+")
]

 numMessages = len(M.list()[1])
 for i in range(numMessages):

 #get the whole e-mail into a single string
 fullmsg = string.join(M.retr(i+1)[1],'\n')

 #parse the string to construct a Message
 msg = p.parsestr(fullmsg)

 #we get the Received header as a timestamp
 datereceived = ""
 if msg.__contains__('Received'):

 datereceived = msg.__getitem__('Received')

 ar = datereceived.split(';')
 try:

29

 datereceived = ar[1]
 except:

 #print "Malformed Received header"
 continue

 datereceived = datereceived.strip()

 #iterate through all parts of the email
 for part in msg.walk():

 # multipart/* are just containers
 if part.get_content_maintype() == 'multipart':

 continue

 filename = part.get_filename()
 #if we have an attachment , dump it to the folder
 if filename:

 fp = open(os.path.join("attachments", filename), 'wb')
 fp.write(part.get_payload(decode=True))
 fp.close()

 else:
 #text parts must be searched for URLs
 body = part.get_payload(decode=True)
 for matcher in urlfinders:

 m = matcher.search(body)
 if m is not None:

 #conver date to sql timestamp
 url_date = to_dateTime(datereceived[5:16])
 url = m.group(0).strip()
 #create a dictionary with url details
 url_dict = {}
 url_dict["url"] = url
 url_dict["date"] = url_date
 if len(url_list) == 0:
 url_list.append(url_dict)
 else:

 url_found = False
 for i in range(len(url_list)):

 if url_list[i]["url"] == url:
 url_found = True;
 break
 if url_found == True:
 dt1 = url_list[i]["date"]
 dt2 = url_date
 m1, d1, y1 = datetime_slice(dt1)
 m2, d2, y2 = datetime_slice(dt2)
 date1 = dt.date(y1, m1, d1)
 date2 = dt.date(y2, m2, d2)
 dateDiff = date2 - date1

 if dateDiff.days < 0:
 url_list[i]["date"] = url_date

 else:
 url_list.append(url_dict)

 M.quit()

30

#list with dictionaries of unique url domains and their timestamps
urls=[]

print "* Start to examine the mailboxes"
hotmail_parser("johanna_1990@windowslive.com","Password!.",urls)
hotmail_parser("gina_sweeet@windowslive.com","Password!.",urls)
hotmail_parser("natallia_88@live.com","Password!.",urls)
hotmail_parser("claudia__87@live.com","Password!.",urls)
hotmail_parser("lucia__86@live.com","Password!.",urls)
hotmail_parser("milena86@windowslive.com","Password!.",urls)
hotmail_parser("emma88@windowslive.com","Password!.",urls)
hotmail_parser("emily86@windowslive.com","Password!.",urls)
hotmail_parser("sofia__89@windowslive.com","Password!.",urls)
#hotmail_parser("maria__88@windowslive.com","Password!.",urls) #other pass!!!
hotmail_parser("christina___89@windowslive.com","Password!.",urls)
hotmail_parser("ada_1990@windowslive.com","Password!.",urls)
#hotmail_parser("helen__88@windowslive.com","Password!.",urls)
hotmail_parser("miss_anna_90@live.com","Password!.",urls)
hotmail_parser("christinaa_1990@windowslive.com","Christ!Ina.",urls)
hotmail_parser("miss_honey@windowslive.com","Miss!Honey.",urls)
hotmail_parser("mr_honey@windowslive.com","Mr!Honey.",urls)
hotmail_parser("mariaa_1990@windowslive.com","Mar!Ia.",urls)

url_sum=0
urls_added=0

connect to the MySQL server
try:
 print "\n* Connecting to database..."
 conn = MySQLdb.connect (host = "localhost",
 user = "root",
 passwd = "mv2ghasz",
 db = "im_honeypots")
except MySQLdb.Error, e:
 print "Error %d: %s" % (e.args[0], e.args[1])
 sys.exit (1)

#try:
cursor = conn.cursor ()

for i in range(len(urls)):
 #see if this url already exists in the database
 cursor.execute("select * from mail_url where url='%s'"%urls[i]["url"])
 row = cursor.fetchone ()
 if row == None :
 cursor.execute ("""

INSERT INTO mail_url (url, timestamp, category, source)
VALUES
 ('%s', '%s', null, '%s')

 """ % (urls[i]["url"],urls[i]["date"], "email"))
 url_sum+=1
 urls_added+=1

 else:
 url_sum+=1

#except MySQLdb.Error, e:
print "Error %d: %s" % (e.args[0], e.args[1])

31

cursor.close ()
print "\n---> total URLs:%d\n"%url_sum
print "---> URLs added:%d\n"%urls_added
for i in range(len(urls)):
 print urls[i]["url"]+""+urls[i]["date"]
Code of msn handler:

Code for parsing the log files of the decoy accounts, extracting
the URLs and store them to a database (Python):

#!/usr/bin/python

import xml.dom.minidom

import sys, string, os

import subprocess

import re

import datetime as dt

import MySQLdb

'''
 different types of date:
 m/d/yyyy len=8
 m/dd/yyyy len=9
 mm/d/yyyy len=9
 mm/dd/yyyy len=10
'''
def date_slice(s):
 if len(s) == 8:
 return int(s[0:1]), int(s[2:3]), int(s[6:8])
 elif len(s) == 10:
 return int(s[0:2]), int(s[3:5]), int(s[8:10])
 elif len(s) == 9:
 if s[1] == '/':
 return int(s[0:1]), int(s[2:4]), int(s[7:9])
 else:
 return int(s[0:2]), int(s[3:4]), int(s[7:9])

def slice_dash(s):
 if len(s) == 8:
 return int(s[5:6]), int(s[7:8]), int(s[2:4])
 elif len(s) == 10:
 return int(s[5:7]), int(s[8:10]), int(s[2:4])
 elif len(s) == 9:
 if s[6] == '-':
 return int(s[5:6]), int(s[7:9]), int(s[2:4])
 else:
 return int(s[5:7]), int(s[8:9]), int(s[2:4])

#def datetime_slice(s):
return int(s[6]), int(s[9]), int(s[3])
#def datetime_slice(s):
return int(s[5:7]), int(s[8:10]), int(s[0:4])

32

Pattern for fully-qualified URLs:
url_pattern = re.compile(r'''
 (?x)(# verbose identify URLs within text
 (http|ftp|gopher|www.) # make sure we find a resource type
 (://){0,} # ...needs to be followed by colon-slash-slash
 (\w+[:.]?){2,} # at least two domain groups, e.g. (gnosis.)(cx)
 (/?| # could be just the domain name (maybe w/ slash)
 [^ \n\r"]+ # or stuff then space, newline, tab, quote
 [\w/]) # resource name ends in alphanumeric or slash
 (?=[\s\.,>)'"\]]) # assert: followed by white or clause ending
) # end of match group
 ''')

l = []

def getText(nodelist):
 rc = ""
 for node in nodelist:
 if node.nodeType == node.TEXT_NODE:
 rc = rc + node.data
 return rc

def handleLog(log):
 messages = log.getElementsByTagName('Message')
 handleMessages(messages)

def handleMessages(messages):
 for message in messages:

bitmess = message
date = bitmess.attributes["DateTime"]
#print date.value

 handleMessage(message, date)

def handleMessage(message, date):
 handleMessageText(message.getElementsByTagName("Text")[0], date)

def handleMessageText(text, date):
 all = url_pattern.findall("%s\n" % getText(text.childNodes).encode("utf-8"))
 if all == []:

return
 for i in all:
 d = {}

 #if url begins with 'w' ("www"...) add in the begining "http://"
 if i[0][0] == 'w':

url = "http://"+i[0]
 else:

url = i[0]

 d["url"] = url
 datetime = date.value
 this_date = datetime[0:10] #keep only the date
 md, dd, yd = datetime_slice(this_date)
 d["date"] = this_date
 if len(l) == 0:

l.append(d)

33

return

 url_found = False
 for j in range(len(l)):

if l[j]["url"] == url:
 url_found = True
 break

 if url_found == True:
dt1 = l[j]["date"]
dt2 = this_date
m1, d1, y1 = datetime_slice(dt1)
m2, d2, y2 = datetime_slice(dt2)
date1 = dt.date(y1, m1, d1)
date2 = dt.date(y2, m2, d2)
dateDiff = date2 - date1

if dateDiff.days < 0:
 l[j]["date"] = this_date

 else:
 l.append(d)

def fileExists(f):
 try:
 file = open(f)
 except IOError:
 exists = 0
 else:
 exists = 1
 return exists

--- The Main Program ---
logspath = "/home/petsas/project/msn logs/"

dirList=os.listdir(logspath)

print "* Start to examine msn log files"

for fname in dirList:
 print "* examine msn logs for %s" % fname

 scriptpath = os.getcwd()+"/"
 os.chdir(logspath+fname+"/History/")

 path="./"
 total_files = 0
 dirList=os.listdir(path)
 for fname1 in dirList:
 if os.path.splitext(fname1)[-1] == ".xml":

 logfile = open(fname1,"r")

 dom = xml.dom.minidom.parse(logfile)

 handleLog(dom)

34

 logfile.close()
 total_files = total_files + 1

print "\n---> total log files examined:%d\n"%total_files

url_sum=0
urls_added=0
res = open("res","w")
connect to the MySQL server

try:
 print "\n* Connecting to database..."
 conn = MySQLdb.connect (host = "localhost",
 user = "root",
 passwd = "mv2ghasz",
 db = "im_honeypots")
except MySQLdb.Error, e:
 print "Error %d: %s" % (e.args[0], e.args[1])
 sys.exit (1)

for i in range(len(l)):
res.write("%s %s\n" % (l[i]["url"], l[i]["date"]))

#try:
cursor = conn.cursor ()

for i in range(len(l)):
#res.write("%s %url_sus\n" % (l[i]["url"], l[i]["date"]))

 cursor.execute("select * log_url from url where url='%s'"%l[i]["url"])
 row = cursor.fetchone ()
 if row == None :
 #print "None\n"
 cursor.execute ("""

INSERT INTO log_url (url, timestamp, category)
VALUES
 ('%s', '%s', null)

 """ % (l[i]["url"],l[i]["date"]))
 url_sum+=1
 urls_added+=1

 else:
 url_sum+=1
 #print cursor.rowcount

#except MySQLdb.Error, e:
print "Error %d: %s" % (e.args[0], e.args[1])
#res.close()
cursor.close ()
print "\n---> total URLs:%d\n"%url_sum
print "---> URLs added:%d\n"%urls_added

MSN Handler:

35

Accept files and contacts procedure (AutoIt):

36

37

add contact from a file procedure (AutoIt):

38

39

40

